What's new in PG18

Tomas Vondra <tomas@vondra.me> / https://vondra.me
OpenAlt 2025, November 1-2, Brno

M= Microsoft

mailto:tomas@vondra.me
https://vondra.me

Tomas Vondra

e Postgres engineer @ Microsoft

e https://vondra.me

e vondratomas@microsoft.com

e tomas@vondra.me

e oOffice hours

https://vondra.me
mailto:vondratomas@microsoft.com
mailto:tomas@vondra.me

Agenda

e Development overview
e Breaking changes

e New features
o DBA and administration
o SQL and developer
o Backup and replication
o Performance

https://www.hagander.net/talks/PostgreSQL%2018.pdf

https://www.postgresql.org/docs/current/release-18.html

https://www.youtube.com/@pgeu/videos

https://www.hagander.net/talks/PostgreSQL%2018.pdf
https://www.postgresql.org/docs/current/release-18.html
https://www.youtube.com/@pgeu/videos

Development schedule

e July 2024 - branch 17

e July 2024 - CF1

e September 2024 - CF2

e November 2024 - CF3

e January 2025 - CF4

e March 2025 - CF5

e September 2025 - Release!

REL 18 STABLE

commit e26810d01d441a457217a6eae9c2989fba29b80f
Author: Michael Paquier <michael@paquier.xyz>
Date: Mon Jul 1 07:56:10 2024 +0900

Stamp HEAD as 18devel.

Let the hacking begin ...

current status (2025/10/30):
3119 commits

3997 files changed, 413639 insertions(+), 211453 deletions(-)

Breaking changes

e Remove support for HPPA
e Remove support for lack of spinlocks
e Remove support for lack of atomics

e Remove support for OpenSSL older than 1.1.1

DBA and administration

DBA and administration

e data checksums enabled by default

(@)

(@)

(@)

(@)

Finally!

By initdb

--no-data-checksums to disable
NOT on upgrades (pg_upgrade)

e upgrades & stats

(@)

(@)

(@)

Stats are transferred on pg_upgrade
pg_stats, not pg_stat

ready to use much faster after upgrade!
actually in pg_dump

only basic stats (not extended)

DBA and administration / Authentication

e md>5 deprecated

o Can set md5_password_warnings=off
o Butdon't!

e OAUTHBEARER

o Log in using OAUTH bearer token
o Requires server side provider

o WritteninC

o No default provided

e SCRAM pass-through

o In postgres_fdw and dblink

o No need for clear-text password

o use_scram_passthrough=true on SERVER
o Must have same salt and iteration count!

DBA and administration / TLS

e Support for TLSv1.3 cipher suites
e Support for multiple ECDH curves
e pg crypto can disable built-in crypto

autovacuum

e autovacuum_max_threshold
o forlarge tables (rows * vacuum_scale_factor) too large
o upper bound on calculated threshold, default 100M

e autovacuum_max_workers

o change without restart
o up to autovacuum_worker_slots

o probably not what you need

VACUUM / ANALYZE

e EXPLAIN ANALYZE
o BUFFERS enabled by default

o Show parallel bitmap scan stats

o Show memory/disk use for Materialize nodes

e VACUUM [ONLY]
o For both VACUUM and ANALYZE

o Specify ONLY to not recurse into partitions

o ANALYZE particularly useful for partitioned tables

COPY

log verbosity = 'silent'

COPY a FROM '/tmp/test.csv'

WITH (FORMAT csv, ON_ERROR ignore);
NOTICE: 2 rows were skipped due to data type incompatibility
COPY 4

COPY a FROM '/tmp/test.csv'
WITH (FORMAT csv, ON_ERROR ignore, LOG_VERBOSITY silent);
COPY 4

Parallel worker stats

e New fields

o parallel_workers_to_launch

o parallel_workers_launched
e Per db or statement

o pg_stat database

o pg_stat _statements

VACUUM stats

e Per table time spent
o total_vacuum_time
o total_autovacuum_time
o total _analyze time

o total_autoanalyze time
e Time spent delaying

o pg_stat progress vacuum

o pg_stat progress analyze

WAL stats

e Now tracked in pg_stat io

o Much more granular

o Per backend-type
e Removed from pg_stat wal

e wal buffers full

o Added to pg_stat_statements
o In VACUUM/ANALYZE VERBOSE
o In EXPLAIN (WAL)

e Still globally in pg_stat wal

GUC changes

e effective _io_concurrency

e maintenance_io_concurrency

o new defaultis 16

SQL and developer

UUIDv7

e New generation function

e Sortable

e Standard says milliseconds

e PostgreSQL does 12-bit sub-millisecond

e Better for indexes

OLD/NEW for RETURNING

e OLD/NEW for RETURNING

e Ability to access both old and new value

o In UPDATE
o And MERGE

e But also for ON CONFLICT
o Determine INSERT or UPDATE

Virtual generated columns

e Like STORED virtual columns
e Except not.. stored.

e Re-calculated on each read

e Cannot be indexed

e '"Partial view"

Temporal keys

e PRIMARY and FOREIGN

e You probably want btree gist

Backup and replication

pg_verifybackup

Can now verify tar format

(previously only plain)

logical replication

Replicate generated columns
e Logical replication of generated columns
e Only stored!
pg_stat _subscription_stats
e Collects conflict stats
e INSERT / UPDATE conflicts
e Origin conflicts
e UPDATE / DELETE missing

Performance

Many different

e Lots of infrastructure
e Often not directly exposed
e Use streaming I/O

e More eagerly vacuum all-visible pages
o To make aggressive vacuum cheaper

e (... more)

Parallel CREATE INDEX

e Now also for GIN
e (in addition to btree and brin)

e hstore, pg_trgm, tsvector, json, jsonb, ...

btree index skip-scan

Use multi-column index for non-prefix scans
Not as fast as dedicated index
But fewer indexes!

Typically with few distinct values in early columns

https://www.youtube.com/watch?v=DpeGBfxg4yc

https://www.youtube.com/watch?v=DpeGBfxg4yc

Pg_upgrade

Much more parallel

Previously just pg_dump and copy/link
--swap mode

Move data directory, then overwrite catalog

Fast, but no rollback

General queries

e Detect redundant GROUP BY based on UNIQUE
o Previously only PRIMARY KEY

e Proper row estimates for generate_series
o now also numeric and timestamp

e Optimized tuplestore for recursive CTE

o Much faster for some queries (25+%)

General queries

e Reduced memory usage on partitionwise join
e JSON escaping using SIMD
e Right Semi Join

e Faster numeric multiplication and division

General queries

e enable_self join_elimination

o remove unnecessary joins (table already joined)
o ...can be proven to be the same output
o often caused by VIEWs or ORMs

o has to be cheap not to hurt "good" queries
e enable distinct _reordering

o remove unnecessary sort for DISTINCT
e incremental sorts, partition-wise joins

o allow in more cases

Asynchronous I/O

e worker orio_uring

e default: worker

e faster prefetching

e foundation for direct I/O
e but not there yet

o only reads (for now)

pgconf.eu

e https://anarazel.de/talks/2025-10-23-pgconf-eu-aio-in-PG-18-and-beyond/aio-in-PG-18-and-beyond.pdf
pgconf.dev

° https://anarazel.de/talks/2025-05-15-pgconf-dev-what-went-wrong-aio/what-went-wrong-aio.pdf

e https://www.youtube.com/watch?v=GR5v9DHiS8w

https://www.postgresql.eu/events/pgconfeu2025/schedule/session/7001-aio-in-pg-18-and-beyond/
https://anarazel.de/talks/2025-10-23-pgconf-eu-aio-in-PG-18-and-beyond/aio-in-PG-18-and-beyond.pdf
https://www.pgevents.ca/events/pgconfdev2025/schedule/session/430-what-went-wrong-with-aio/
https://anarazel.de/talks/2025-05-15-pgconf-dev-what-went-wrong-aio/what-went-wrong-aio.pdf
https://www.youtube.com/watch?v=GR5v9DHiS8w

Q&A

