Performance improvements In
PostgreSQL 9.5 and 9.6

5432meet.us 2016, June 29, Milan

Tomas Vondra
tomas.vondra@2ndquadrant.com

2ndQuadrant T

Professional PostgreSQL

http://www.slideshare.net/fuzzycz/postgresql-
performance-improvements-in-95-and-96

2ndQuadrant 1

Professional PostgreSQL

PostgreSQL 9.5, 9.6, ...

* many improvements

- many of them related to performance
- many quite large

* release notes are good overview, but ...

- many changes not mentioned explicitly
- often difficult to get an idea of the impact

* many talks about new features in general
- this talk is about changes affecting performance

2ndQuadrant 1

Professional PostgreSQL

What we'll look at?

e PostgreSQL 9.5 & 9.6
e only “main” improvements

- complete “features” (multiple commits)
- try to showcase the impact
- no particular order

» dozens of additional optimizations
- see release notes for the full list

2ndQuadrant 1

Professional PostgreSQL

PostgreSQL 9.5

ondQuadrant 1

Professional PostgreSQL

Sorting

« allow sorting by Iin-lined, non-SQL-callable functions
- reduces per-call overhead
» use abbreviated keys for faster sorting (strxfrm)

- VARCHAR, TEXT, NUMERIC
— does not apply to CHAR values!

 places using “Sort Support” benefits from this

- CREATE INDEX, REINDEX, CLUSTER
- ORDER BY (when not evaluated using an index)

2ndQuadrant 1

Professional PostgreSQL

Sorting

-- randomly sorted table
CREATE TABLE test text random AS

SELECT md5(1i::text) AS val
FROM generate series(1l, 50.000.000) s(i);

-- correctly sorted table

CREATE TABLE test text asc AS
SELECT * from test text random ORDER BY 1;

-- test query

SELECT COUNT(1) FROM (
SELECT * FROM test text_random ORDER BY 1

) foo;

2ndQuadrant 1

Professional PostgreSQL

duration [seconds]

500
450
400
350
300
250
200
150
100
50
0

Sorting improvements in PostgreSQL 9.5

sort duration on 50M rows (TEXT)

Lelek

desc almost asc almost desc random

dataset type

B PostgreSQL 9.4 m PostgreSQL 9.5

ondQuadrant 1

Professional PostgreSQL

duration [seconds]

350
300
250
200
150
100
50
0

Sorting improvements in PostgreSQL 9.5

sort duration on 50M rows (NUMERIC)

LLLLL

desc almost asc almost desc random

dataset type

B PostgreSQL 9.4 mPostgreSQL 9.5

ondQuadrant 1

Professional PostgreSQL

Hash Joins

* reduce palloc overhead
- dense packing of tuples (trivial local allocator, same life-span)
- significant reduction of overhead (both space and time)
* reduce NTUP_PER_BUCKET to 1 (from 10)
- goal is less that 1 tuple per bucket (on average)
- significant speedup of lookups
» dynamically resize the hash table

- handle under-estimates gracefully
- otherwise easily 100s of tuples per bucket (linked list)

2ndQuadrant 1

Professional PostgreSQL

Hash Joins

o 12 3 4 5|6 789 10 11
AEEEEEEEEEEEN
AEEEEEEEEEEEN
AEEEEEEEEEEEN
AEEEEEEEEN N

||

||

ondQuadrant 1

Professional PostgreSQL

Hash Joins

2ndQuadrant 1

Professional PostgreSQL

Hash Joins

-- dimension table (small one, will be hashed)
CREATE TABLE test dim AS
SELECT (i-1) AS id, md5(i::text) AS val

FROM generate series(l, 100.000) s(1);

-- fact table (large one)

CREATE TABLE test_fact AS

SELECT mod(i, 100.000) AS dim id, md5(i::text) AS val
FROM generate series(l, 50.000.000) s(i);

-- example query (join of the two tables)
SELECT count(*) FROM test fact
JOIN test dim ON (dim id = id);

2ndQuadrant 1

Professional PostgreSQL

duration [miliseconds]

PostgreSQL 9.5 Hash Join Improvements

join duration - 50M rows (outer), different NTUP_PER_BUCKET
50000

40000

30000

200000 600000 1000000 1400000 1800000
0 400000 800000 1200000 1600000 2000000

hash size (number of tuples in dimension)

— NTUP_PER_BUCKET=10 — NTUP_PER_BUCKET=1

2ndQuadrant 1

Professional PostgreSQL

BRIN Indexes

min=95, max=985

min=11, max=212 WHERE ¢ BETWEEN 100 AND 200
min=1, max=45
min=139, max=450
min=33, max=75

min=1223, max=2392 < —— WHERE c=1999

mMin=3456, max=7800

2ndQuadrant 1

Professional PostgreSQL

BRIN Indexes

-- table with 100M rows
CREATE TABLE test_bitmap AS
SELECT mod(i, 100.000) AS val
FROM generate series(1l, 100.000.000) s(1);
CREATE INDEX test btree idx ON test bitmap(val);
CREATE INDEX test brin idx ON test bitmap USING brin(val);

—-- benchmark (enforce bitmap index scan)
SET enable segscan = off;

SET enable indexscan = off;

SELECT COUNT(*) FROM test bitmap WHERE val <= $1;

2ndQuadrant 1

Professional PostgreSQL

BRIN vs. BTREE

Bitmap Index Scan on 100M rows (sorted)

20000

15000

10000

5000

duration [miliseconds]

0
0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

fraction of table matching the condition

— BTREE —BRIN (128) — BRIN (4)

ondQuadrant 1

Professional PostgreSQL

size (MB)

2500

2000

1500

1000

500

2142

btree

BRIN vs. BTREE

Index size on 100M rows

11

BRIN (1)

2.8 0.13
BRIN (4) BRIN (128)

ondQuadrant 1

Professional PostgreSQL

Other Index Improvements

« CREATE INDEX

- avoid copying index tuples when building an index (palloc
overhead)

* Index-only scans with GIST

— support to range type, inet GIST opclass and btree gist
« Bitmap Index Scan

- In some cases up to 50% spent in tbm add tuples

- cache the last accessed page in tbm add tuples

2ndQuadrant 1

Professional PostgreSQL

Other Improvements

locking and shared_buffers scalability

- reduce overhead, make it more concurrent
- large (multi-socket) systems
- reduce lock strength for some DDL commands

CRC optimizations (--data-checksums)

- use SSE when available, various optimizations
- significantly improved throughput (GB/s)
planner optimizations

- make the planning / execution smarter
PL/pgSQL improvements

2ndQuadrant 1

Professional PostgreSQL

read-only scalability improvements in 9.5
pgbench -S -M prepared - $N -c $N
600000
500000
400000
300000
200000
100000

transactions per second

0
0 10 20 30 40 50 60 70

number of clients

— PostgreSQL 9.4 — PostgreSQL 9.5

ondQuadrant 1

Professional PostgreSQL

PostgreSQL 9.6

ondQuadrant 1

Professional PostgreSQL

Parallel Query

 until now, each query limited to 1 core

» 9.6 parallelizes some operations

- sequential scan, aggregation, joins (NL + hash)
- limited to read-only queries
- setup overhead, efficient on large tables

* in the future
— utility commands (CREATE INDEX, VACUUM, ...)

- additional operations (Sort, ...)
— Improving supported ones (sharing hashtable in hashjoins)

2ndQuadrant 1

Professional PostgreSQL

Parallel Query

-- table with 1 billion rows (~80GB on disk)
CREATE TABLE f AS
SELECT MOD(i,100000) AS id, MD5(i::text) AS h, random() AS amount
FROM generate series(1,1000000000) s(i);

EXPLAIN SELECT SUM(amount) FROM f JOIN d USING (id);

QUERY PLAN
Aggregate (cost=35598980.00..35598980.01 rows=1 width=8)
-> Hash Join (cost=3185.00..33098980.00 rows=1000000000 width=8)
Hash Cond: (f.id = d.id)

-> Seq Scan on f (cost=0.00..19345795.00 rows=1000000000 ...)
-> Hash (cost=1935.00..1935.00 rows=100000 width=4)
-> Seq Scan on d (cost=0.00..1935.00 rows=100000 ...)

(6 rows)

2ndQuadrant 1

Professional PostgreSQL

Parallel Query

SET max parallel workers per gather = 32;
EXPLAIN SELECT SUM(amount) FROM f JOIN d USING (id);

QUERY PLAN

Finalize Aggregate (cost=14488869.82..14488869.83 rows=1 width=8)
-> Gather (cost=14488868.89..14488869.80 rows=9 width=8)
Workers Planned: 9
-> Partial Aggregate (cost=14487868.89..14487868.90 rows=1] width=8)

-> Hash Join (cost=3185.00..11987868.89 rows=1000000000 width=8)

Hash Cond: (f.id = d.id)
-> Parallel Seq Scan on £ (cost=0.00..10456906.11 ...)
-> Hash (cost=1935.00..1935.00 rows=100000 width=4)
-> Seq Scan on d (cost=0.00..1935.00 rows=100000
(9 rows)

2ndQuadrant

Professional PostgreSQL

c.l)

_I!

top

PID VIRT RES SHR S %CPU %¥MEM COMMAND
19018 32.8g 441m 427m R 100 0.2 postgres: sekondquad test [local] SELECT
20134 32.8g 80m 74m R 100 0.0 postgres: bgworker: parallel worker for PID 19018
20135 32.8g 80m 74m R 100 0.0 postgres: bgworker: parallel worker for PID 19018
20136 32.8g 80m 74m R 100 0.0 postgres: bgworker: parallel worker for PID 19018
20140 32.8g 80m 74m R 100 0.0 postgres: bgworker: parallel worker for PID 19018
20141 32.8g 80m 74m R 100 0.0 postgres: bgworker: parallel worker for PID 19018
20142 32.8g 80m 74m R 100 0.0 postgres: bgworker: parallel worker for PID 19018
20137 32.8g 80m 74m R 99 0.0 postgres: bgworker: parallel worker for PID 19018
20138 32.8g 80m 74m R 99 0.0 postgres: bgworker: parallel worker for PID 19018
20139 32.8g 80m 74m R 99 0.0 postgres: bgworker: parallel worker for PID 19018

16 0 0 0 s 0 0.0 [watchdog/2]
281 0 0 0 S 0 0.0 [khugepaged]

2ndQuadrant 1

Professional PostgreSQL

duration [seconds]

400

350

300

250

200

150

100

50

speedup with parallel query

example query without and with parallelism

360

0 workers

40

9 workers

ondQuadrant 1

Professional PostgreSQL

Parallel Query Has Arrived!

Parallel Query Architecture

Parallel-Aware
Gather Parallel Executor Executor Nodes
nodeGather.c | il Support I nodeSeqScan.c
& execParallel.c nodeForeignScan.c
' nodeCusiom.c
L L
Tuple Queuve Reader

State Synchronization
and DestReceiver

Parallel Context | el e p

parallel.c

MU, C snapmgr.c, xactc
[|

L
Shared Memory Dynamic
Message Queue * Background Workers
shm_mq.c bgworker.c
L]
Shared Memory

Error/Notice ' * Table of Contents
Forwarding © , shm_toc.c
Fo— Group Locking i

Dynamic Shared
Memory

dsm.c, dam_impl.c |

lock.c

https://www.youtube.com/watch?v=ysHZ1PDnH-s

2ndQuadrant 1

Professional PostgreSQL

Aggregate functions

e SOMe aggregates use the same state

- AVG, SUM, ...
- we’re keeping it separate and updating it twice
- but only the final function is actually different

* SO ...

Share transition state between different
aggregates when possible.

2ndQuadrant 1

Professional PostgreSQL

Aggregate functions

-- table with 50M rows
CREATE TABLE test aggregates AS
SELECT 1 AS a
FROM generate series(1l, 50.000.000) s(1);

—— compute both SUM and AVG on a column
SELECT SUM(a), AVG(a) FROM test aggregates;

2ndQuadrant 1

Professional PostgreSQL

14000
12000
S 10000
[
S
3 8000
£ 6000
c
S
= 4000
5
© 2000
0

5438

Aggregate functions

sharing aggregate state

BIGINT

M before M after

12858

NUMERIC

ondQuadrant 1

Professional PostgreSQL

Checkpoints

* we need to write dirty buffers to disk regularly

- data written to page cache (no O_DIRECT)
- kernel responsible for actual write out

 until now, we simply walked shared buffers

- random order of buffers, causing random /O
- 9.6 sorts the buffers first, to get sequential order

 until now, we only only did fsync at the end

- a lot of dirty data in page cache, latency spikes
- 9.6 allows continuous flushing (disabled by default)

2ndQuadrant 1

Professional PostgreSQL

Improving Postgres' Buffer Manager

Andres Freund
PostgreSQL Developer & Committer
Citus Data — citusdata.com - @citusdata

http://anarazel.de/talks/fosdem-2016-01-31/i0.pdf
citusdata

TPS

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB

- WY 1 A0 P e o 0 -
M 1 1.
20: MMMMMMMMMMMMMMMMMMMM AL nLﬂ Il M TR mU'J LI Jﬂd I I LH J‘ Nl V ”Ju LML U‘ AL :OO

Q A D » D O N % > Q ‘)‘ D © QO
Q '\ <‘.> Qy‘q/&l/ (,)'\r @q A\ /\bq’q)b(Q’(b Q'\r N@{Lb 69‘6\' Q)Qq’éb /\'\ @q‘bq] (l'/\'%@‘ﬂ’ (L@q/b?mq?)%(&\(@({/\ (8} "]9’

seconds CitUSd ata

TPS

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, target = 0.9; OS tuning (no dirty)

2000 1200
1800 F M
1000
1600
1400
800
1200
_ ——TPS
1000 600 iéi —— Latency
>
~ 2
]
g
800 “
|
400
600
400
200
200
~ |
| o M_N*J‘ “‘/ o WA I At AW A A A AN A | T T S YA YRTNY VOV WYY W R VNN W NIy
0 0

> o @ PR © @O A >0 DO © D G XD o DD
Vo ® @ R PFELE PR PP O WP L L PP P PSP

seconds citusdata

https://www.youtube.com/watch?v=ysHZ1PDnH-s

Sort (again)

» abbreviated keys extended to

- additional data types: uuid, bytea, char(n)
- ordered set aggregates

* Use quicksort (instead of replacement selection)
for “external sort” case

* ... and many other optimizations

2ndQuadrant 1

Professional PostgreSQL

duration (seconds)

6000

5000

4000

3000

2000

1000

Sort performance in 9.5/ 9.6

32MB 128MB 512MB

work_mem

B PostgreSQL 9.5 M PostgreSQL 9.6

ondQuadrant 1

Professional PostgreSQL

Freezing

» XIDs are 64-bit, but we only store the low 32 bits

- need to do “freeze” every ~2 billion transactions

- that means reading all the data (even unmodified parts)
- problem on large databases (time consuming)

- users often postpone until it’s too late (outage)

* PostgreSQL 9.6 introduces “freeze map”

- similar to “visibility map” (and stored in the same file)
- “all rows on page are frozen” - we can skip this 8kB page

2ndQuadrant 1

Professional PostgreSQL

Future

extending parallel query (additional operations)
declarative partitioning (smart joins, ...)
columnar features

- vectorized execution, compression, ...
- do more with the same amount of resources

Improving planner

— correlation statistics, optimizations (unijoins)

2ndQuadrant 1

Professional PostgreSQL

Questions?

ondQuadrant 1

Professional PostgreSQL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

