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PostgreSQL 9.5, 9.6, ...

* many improvements

- many of them related to performance
- many quite large

* release notes are good overview, but ...

- many changes not mentioned explicitly
- often difficult to get an idea of the impact

* many talks about new features in general
- this talk is about changes affecting performance
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What we'll look at?

e PostgreSQL 9.5 & 9.6
e only “main” improvements

- complete “features” (multiple commits)
- try to showcase the impact
- no particular order

» dozens of additional optimizations
- see release notes for the full list
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PostgreSQL 9.5
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Sorting

« allow sorting by Iin-lined, non-SQL-callable functions
- reduces per-call overhead
» use abbreviated keys for faster sorting (strxfrm)

- VARCHAR, TEXT, NUMERIC
— does not apply to CHAR values!

 places using “Sort Support” benefits from this

- CREATE INDEX, REINDEX, CLUSTER
- ORDER BY (when not evaluated using an index)
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Sorting

-- randomly sorted table
CREATE TABLE test text random AS

SELECT md5(1i::text) AS val
FROM generate series(1l, 50.000.000) s(i);

-- correctly sorted table

CREATE TABLE test text asc AS
SELECT * from test text random ORDER BY 1;

-- test query

SELECT COUNT(1) FROM (
SELECT * FROM test text_random ORDER BY 1

) foo;
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Hash Joins

* reduce palloc overhead
- dense packing of tuples (trivial local allocator, same life-span)
- significant reduction of overhead (both space and time)
* reduce NTUP_PER_BUCKET to 1 (from 10)
- goal is less that 1 tuple per bucket (on average)
- significant speedup of lookups
» dynamically resize the hash table

- handle under-estimates gracefully
- otherwise easily 100s of tuples per bucket (linked list)
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Hash Joins
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Hash Joins
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Hash Joins

-- dimension table (small one, will be hashed)
CREATE TABLE test dim AS
SELECT (i-1) AS id, md5(i::text) AS val

FROM generate series(l, 100.000) s(1);

-- fact table (large one)

CREATE TABLE test_fact AS

SELECT mod(i, 100.000) AS dim id, md5(i::text) AS val
FROM generate series(l, 50.000.000) s(i);

-- example query (join of the two tables)
SELECT count(*) FROM test fact
JOIN test dim ON (dim id = id);
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BRIN Indexes
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BRIN Indexes

-- table with 100M rows
CREATE TABLE test_bitmap AS
SELECT mod(i, 100.000) AS val
FROM generate series(1l, 100.000.000) s(1);
CREATE INDEX test btree idx ON test bitmap(val);
CREATE INDEX test brin idx ON test bitmap USING brin(val);

—-- benchmark (enforce bitmap index scan)
SET enable segscan = off;

SET enable indexscan = off;

SELECT COUNT(*) FROM test bitmap WHERE val <= $1;
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BRIN vs. BTREE

Bitmap Index Scan on 100M rows (sorted)
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Other Index Improvements

« CREATE INDEX

- avoid copying index tuples when building an index (palloc
overhead)

* Index-only scans with GIST

— support to range type, inet GIST opclass and btree gist
« Bitmap Index Scan

- In some cases up to 50% spent in tbm add tuples

- cache the last accessed page in tbm add tuples
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Other Improvements

locking and shared_buffers scalability

- reduce overhead, make it more concurrent
- large (multi-socket) systems
- reduce lock strength for some DDL commands

CRC optimizations (--data-checksums)

- use SSE when available, various optimizations
- significantly improved throughput (GB/s)
planner optimizations

- make the planning / execution smarter
PL/pgSQL improvements
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read-only scalability improvements in 9.5
pgbench -S -M prepared - $N -c $N
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PostgreSQL 9.6
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Parallel Query

 until now, each query limited to 1 core

» 9.6 parallelizes some operations

- sequential scan, aggregation, joins (NL + hash)
- limited to read-only queries
- setup overhead, efficient on large tables

* in the future
— utility commands (CREATE INDEX, VACUUM, ...)

- additional operations (Sort, ...)
— Improving supported ones (sharing hashtable in hashjoins)
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Parallel Query

-- table with 1 billion rows (~80GB on disk)
CREATE TABLE f AS
SELECT MOD(i,100000) AS id, MD5(i::text) AS h, random() AS amount
FROM generate series(1,1000000000) s(i);

EXPLAIN SELECT SUM(amount) FROM f JOIN d USING (id);

QUERY PLAN
Aggregate (cost=35598980.00..35598980.01 rows=1 width=8)
-> Hash Join (cost=3185.00..33098980.00 rows=1000000000 width=8)
Hash Cond: (f.id = d.id)

-> Seq Scan on f (cost=0.00..19345795.00 rows=1000000000 ...)
-> Hash (cost=1935.00..1935.00 rows=100000 width=4)
-> Seq Scan on d (cost=0.00..1935.00 rows=100000 ...)

(6 rows)
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Parallel Query

SET max parallel workers per gather = 32;
EXPLAIN SELECT SUM(amount) FROM f JOIN d USING (id);

QUERY PLAN

Finalize Aggregate (cost=14488869.82..14488869.83 rows=1 width=8)
-> Gather (cost=14488868.89..14488869.80 rows=9 width=8)
Workers Planned: 9
-> Partial Aggregate (cost=14487868.89..14487868.90 rows=1] width=8)

-> Hash Join (cost=3185.00..11987868.89 rows=1000000000 width=8)

Hash Cond: (f.id = d.id)
-> Parallel Seq Scan on £ (cost=0.00..10456906.11 ...)
-> Hash (cost=1935.00..1935.00 rows=100000 width=4)
-> Seq Scan on d (cost=0.00..1935.00 rows=100000
(9 rows)
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top

PID VIRT RES SHR S %CPU %¥MEM COMMAND
19018 32.8g 441m 427m R 100 0.2 postgres: sekondquad test [local] SELECT
20134 32.8g 80m 74m R 100 0.0 postgres: bgworker: parallel worker for PID 19018
20135 32.8g 80m 74m R 100 0.0 postgres: bgworker: parallel worker for PID 19018
20136 32.8g 80m 74m R 100 0.0 postgres: bgworker: parallel worker for PID 19018
20140 32.8g 80m 74m R 100 0.0 postgres: bgworker: parallel worker for PID 19018
20141 32.8g 80m 74m R 100 0.0 postgres: bgworker: parallel worker for PID 19018
20142 32.8g 80m 74m R 100 0.0 postgres: bgworker: parallel worker for PID 19018
20137 32.8g 80m 74m R 99 0.0 postgres: bgworker: parallel worker for PID 19018
20138 32.8g 80m 74m R 99 0.0 postgres: bgworker: parallel worker for PID 19018
20139 32.8g 80m 74m R 99 0.0 postgres: bgworker: parallel worker for PID 19018

16 0 0 0 s 0 0.0 [watchdog/2]
281 0 0 0 S 0 0.0 [khugepaged]
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Parallel Query Has Arrived!

Parallel Query Architecture

Parallel-Aware
Gather Parallel Executor Executor Nodes
nodeGather.c | il Support I nodeSeqScan.c
& execParallel.c nodeForeignScan.c
' nodeCusiom.c
L L
Tuple Queuve Reader

State Synchronization
and DestReceiver

Parallel Context | el e p

parallel.c

MU, C snapmgr.c, xactc
[ |

L
Shared Memory Dynamic
Message Queue * Background Workers
shm_mq.c bgworker.c
L]
Shared Memory

Error/Notice ' * Table of Contents
Forwarding © , shm_toc.c
Fo— Group Locking i

Dynamic Shared
Memory

dsm.c, dam_impl.c |

lock.c

https://www.youtube.com/watch?v=ysHZ1PDnH-s
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Aggregate functions

e SOMe aggregates use the same state

- AVG, SUM, ...
- we’re keeping it separate and updating it twice
- but only the final function is actually different

* SO ...

Share transition state between different
aggregates when possible.
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Aggregate functions

-- table with 50M rows
CREATE TABLE test aggregates AS
SELECT 1 AS a
FROM generate series(1l, 50.000.000) s(1);

—— compute both SUM and AVG on a column
SELECT SUM(a), AVG(a) FROM test aggregates;
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Checkpoints

* we need to write dirty buffers to disk regularly

- data written to page cache (no O_DIRECT)
- kernel responsible for actual write out

 until now, we simply walked shared buffers

- random order of buffers, causing random /O
- 9.6 sorts the buffers first, to get sequential order

 until now, we only only did fsync at the end

- a lot of dirty data in page cache, latency spikes
- 9.6 allows continuous flushing (disabled by default)
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Improving Postgres' Buffer Manager

Andres Freund
PostgreSQL Developer & Committer
Citus Data — citusdata.com - @citusdata

http://anarazel.de/talks/fosdem-2016-01-31/i0.pdf
citusdata




TPS

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB
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TPS

pgbench -M prepared -c 32 -j 32

shared_buffers = 16GB, max_wal_size = 100GB, target = 0.9; OS tuning (no dirty)
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https://www.youtube.com/watch?v=ysHZ1PDnH-s

Sort (again)

» abbreviated keys extended to

- additional data types: uuid, bytea, char(n)
- ordered set aggregates

* Use quicksort (instead of replacement selection)
for “external sort” case

* ... and many other optimizations
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Freezing

» XIDs are 64-bit, but we only store the low 32 bits

- need to do “freeze” every ~2 billion transactions

- that means reading all the data (even unmodified parts)
- problem on large databases (time consuming)

- users often postpone until it’s too late (outage)

* PostgreSQL 9.6 introduces “freeze map”

- similar to “visibility map” (and stored in the same file)
- “all rows on page are frozen” - we can skip this 8kB page
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Future

extending parallel query (additional operations)
declarative partitioning (smart joins, ...)
columnar features

- vectorized execution, compression, ...
- do more with the same amount of resources

Improving planner

— correlation statistics, optimizations (unijoins)
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Questions?
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