
Where do performance
cliffs come from?

Tomas Vondra <tomas.vondra@enterprisedb.com>

Goal(s) of this talk

● discuss one class of performance issues

○ fairly common problem

○ affects cost-based optimization (inherent issue)

● explain why this happens

● maybe give some mitigation hints

○ but no promises, sorry :-(

What is a performance cliff?

● sudden (step) change of performance

● sudden = not proportional to change in "inputs"

● example

○ SELECT * FROM my_table WHERE column = $1

○ value "A" matches 1000 rows, query takes 1000 ms

○ value "B" matches 1050 rows, what duration is "expected"?

○ not much more than 1000ms? what if it takes 10000 ms?

● most databases rely on cost estimates

○ how much "resources" will the plan require (CPU, I/O)

○ assumption: more resources => more time to execute

● cost is ...

○ monotonic and continuous function

○ ... with respect to costing parameters

○ ... selectivity of WHERE condition, number of groups, ...

Cost vs. Duration

Garbage in - garbage out

● selectivity estimates

● crucial input of the query planning process

● bogus estimate = anything can happen

● we assume selectivities are “good enough”

Example

small selectivity difference => small cost difference => small duration difference

Eh?! Where's the discontinuity?

● before: performance cliff is a sudden change in performance

● just now: cost is nice, smooth, without steps, ...

● cost is not timing, but should be correlated

● But why would the timing change in a step?

Ideas?

● ?

● ?

● ?

● ?

Ideas?

● cost is relies on estimates - if wildly wrong, anything can happen

● various things are ultimately decided at runtime

○ e.g. hashjoin / hashagg spilling, on-disk sort, ...

○ on/off decision - one row triggers a lot of work

● we're dealing with multiple plans

○ the whole point of why we calculate costs

○ cost and duration may not "align" perfectly

Runtime decisions

Example: ... IN (list)

CREATE TABLE test (a text);

INSERT INTO test

SELECT 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' || md5(random()::text)

 FROM generate_series(1,10000000) s(i);

VACUUM ANALYZE test;

-- table has ~965MB

Example: ... IN (list)

EXPLAIN (ANALYZE, TIMING OFF, COSTS OFF)
SELECT * FROM test WHERE a IN (
 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac4ca4238a0b923820dcc509a6f75849b', -- 1
 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac81e728d9d4c2f636f067f89cc14862c', -- 2
 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeccbc87e4b5ce2fe28308fd9f2a7baf3', -- 3
 'aa87ff679a2f3e71d9181a67b7542122c', -- 4
 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaae4da3b7fbbce2345d7772b0674a318d5', -- 5
 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa1679091c5a880faf6fb5e6087eb1b2dc', -- 6
 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa8f14e45fceea167a5a36dedd4bea2543', -- 7
 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac9f0f895fb98ab9159f51fd0297e236d', -- 8
 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa45c48cce2e2d7fbdea1afc51c7c6ad26' -- 9
);

==> 1000 ms

Example: ... IN (list)

EXPLAIN (ANALYZE, TIMING OFF, COSTS OFF)

SELECT * FROM test WHERE a IN (

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac4ca4238a0b923820dcc509a6f75849b', -- 1

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac81e728d9d4c2f636f067f89cc14862c', -- 2

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeccbc87e4b5ce2fe28308fd9f2a7baf3', -- 3

 'aa87ff679a2f3e71d9181a67b7542122c', -- 4

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaae4da3b7fbbce2345d7772b0674a318d5', -- 5

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa1679091c5a880faf6fb5e6087eb1b2dc', -- 6

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa8f14e45fceea167a5a36dedd4bea2543', -- 7

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac9f0f895fb98ab9159f51fd0297e236d' -- 8

);

==> 2000 ms (EH?! twice the timing of a longer IN list?)

Example: ... IN (list)

 QUERY PLAN

--

 Seq Scan on test (actual rows=0 loops=1)

 Filter: (a = ANY ('{aaaaaaaaaaaaaaaaaaaaaa..., ...}'::text[]))

 Rows Removed by Filter: 10000000

 Planning Time: 0.092 ms

 Execution Time: 1386.788 ms

(5 rows)

● lookup in hash table with >= 9 elements

○ fewer elements => linear search

○ but 9 is hard-coded threshold

● ideal threshold depends on cost of comparison

○ specific to data-type and values (e.g. long prefix like here)

○ impossible to know in advance / during execution

Example: ... IN (list)

● query with in-memory vs. on-disk sort

● query with hashjoin/hashagg in memory vs. spilling to disk

● JIT can be quite expensive & useless

○ enabled depending on total cost of a query

○ ongoing effort to make more granular

Other runtime decisions

Path switch

100M rows, random data

CREATE TABLE test (a INT, b TEXT) WITH (fillfactor=50);

-- 59 rows/page, each page has the same (random) value
INSERT INTO test SELECT a, b FROM (
 SELECT a, b, generate_series(1,59) FROM (
 SELECT 10_000 * random() a,
 md5(random()::text) b
 FROM generate_series(1, 100_000_000/59)
) AS x
) AS y;

CREATE INDEX ON test (a);

1% 27%
13%

SELECT * FROM test WHERE id BETWEEN 1000 AND 1127;
 QUERY PLAN
--
 Bitmap Heap Scan on test (actual rows=1293280 loops=1)
 Recheck Cond: ((id >= 1000) AND (id <= 1127))
 Heap Blocks: exact=21920
 -> Bitmap Index Scan on test_id_idx (actual rows=1293280 loops=1)
 Index Cond: ((id >= 1000) AND (id <= 1127))
 Planning Time: 9.268 ms
 Execution Time: 412.993 ms
(7 rows)

SELECT * FROM test WHERE id BETWEEN 1000 AND 1128;
 QUERY PLAN
--
 Seq Scan on test (actual rows=1301894 loops=1)
 Filter: ((id >= 1000) AND (id <= 1128))
 Rows Removed by Filter: 98698091
 Planning Time: 8.289 ms
 Execution Time: 10706.679 ms
(5 rows)

100M rows, sequential/correlated data

CREATE TABLE test (a INT, b TEXT) WITH (fillfactor=50);

-- monotonic growth, with a bit of random “fuzz”
INSERT INTO test
SELECT (i * 1.0 * 10_000) / 100_000_000 +
 (10_000 * (random() - 0.5)) / 50,
 md5(random()::text)
FROM generate_series(1, 100_000_000) s(i);

CREATE INDEX ON test (a);

20%

75%

6%

select * from test where id between 1000 and 8650;
 QUERY PLAN

 Seq Scan on test (actual rows=76510346 loops=1)
 Filter: ((id >= 1000) AND (id <= 8650))
 Rows Removed by Filter: 23489654
 Planning Time: 0.072 ms
 Execution Time: 11905.432 ms
(5 rows)

select * from test where id between 1000 and 8600;
 QUERY PLAN

 Index Scan using test_id_idx on test (actual rows=76009271 loops=1)
 Index Cond: ((id >= 1000) AND (id <= 8600))
 Planning Time: 8.398 ms
 Execution Time: 130789.542 ms
(4 rows)

Mitigations?

Mitigations

● really hard to fix (during planning)

● inherent to cost-based planning in general

● costing is approximation

○ simplified model + incomplete data => imperfection

○ G. Graefe: "choice is confusion" [1]

● So, what options do you have?

Mitigations

● try to ensure the "flip" does not trigger

○ increase work_mem, for example

○ it "only" moves the threshold ahead

● try to reduce the impact of the "flip"

○ fast but ephemeral storage for temp files?

○ ...

Mitigations

● bit of tuning the cost parameters?

○ random_page_cost, cpu_tuple_cost, ...

○ can the cost / duration charts align better?

● don't bother to fine-tune the parameter values

○ no parameter value is perfect for all queries

○ the flip needs to happen "close enough"

● some important parameters do not affect costing

○ e.g. effective_io_concurrency

Would be better ...

● adaptive execution

○ replace "a priori" decisions with exec time ones

○ ideal: adaptive, smooth transition, not just on/off

○ example: scan type selection vs. "Smooth Scan"

● might also help with estimation errors

● replacement for implementations of a logical node

○ one for scans, another for joins, ...

Robustness / Research papers ...

● Smooth Scan: One Access Path to Rule Them All

R. Borovica, S. Idreos, A. Ailamaki, M. Zukowski, C. Fraser
https://stratos.seas.harvard.edu/files/stratos/files/smoothscan.pdf

● A generalized join algorithm

G. Graefe
https://dl.gi.de/server/api/core/bitstreams/ce8e3fab-0bac-45fc-a6d4-66edaa52d574/content

● Profile of G. Graefe
https://sigmodrecord.org/publications/sigmodRecord/2009/pdfs/05_Profiles_Graefe.pdf

https://stratos.seas.harvard.edu/files/stratos/files/smoothscan.pdf
https://dl.gi.de/server/api/core/bitstreams/ce8e3fab-0bac-45fc-a6d4-66edaa52d574/content
https://sigmodrecord.org/publications/sigmodRecord/2009/pdfs/05_Profiles_Graefe.pdf

What's a performance cliff?

● sudden (step) change in performance after small change of inputs
● what's an input?

○ not parameter values but rather selectivities of the values

● expectation of "smooth" behavior
○ cost is a continuous function, correlated to duration
○ small chance of cost => small change of duration

● what can go wrong?
○ expectation of "sufficiently accurate" estimates => if inputs are bogus, don't expect good plans
○ "smooth cost" applies only to a single path, but we often pick from multiple paths, and the "cost

transition points" may not align with the duration (TODO chart comparing cost/duration for scan
paths)

○ even a single path may flip between algorithms in slightly inaccurate points (e.g. sort with
in-memory vs. on-disk sort or hashagg triggering spill-to-disk), not always known during planning

Examples (single-path)

● IN() clause, with and without hashing (~1000 values?)

● sort with in-memory / on-disk sort

● hash-agg in-memory / spill to disk

Examples (multi-path)

● selecting from multiple scan paths

● cost and duration cross-points may not align

● first show cost chart

● then show duration and how it does not align with cost

● some demos

What can you do?

● not much ;-)
● basic cost tuning to get it "close enough" to duration
● don't skimp on work_mem - if you don't hit the threshold, no cliff
● challenge for optimizer developers

○ every decision = opportunity to get it wrong
○ different algorithm for some parameter values?
○ alternative paths? (new join algorithm, new scan type, ...)

● solution?
○ improve estimates, but don't rely them being 100% correct (literally impossible)
○ focus on "robustness" rather than just raw performance of "ideal plan"
○ adaptive execution - fewer "adaptive" paths rather than many discrete paths

■ examples: SmoothScan and G-join papers (TODO link to papers)
■ examples: maybe unify IndexScan and IndexOnlyScan, make it "gradual"

