
Where do performance
cliffs come from?

Tomas Vondra <vondratomas@microsoft.com> / <tomas@vondra.me>

Malmö Meetup, April 24, 2025

mailto:vondratomas@microsoft.com
mailto:tomas@vondra.me

About me

● developer, contributor, committer

● Microsoft

● tomas@vondra.me

● https://vondra.me

● office hours

mailto:tomas@vondra.me
https://vondra.me

Agenda

● intro

○ What is a performance cliff?

● runtime decisions

○ A simple example of a performance cliff.

● multiple paths

○ Performance cliffs related to cost-based planning.

● mitigations

○ What can we do about this?

Performance cliffs

● multiple / ambiguous definitions
○ sudden change of performance

● a class of performance (robustness) issues
○ fairly common problem (but somewhat hidden)

○ affects cost-based planning (inherent issue)

● why it happens?

● what can you do about it?
○ mitigation ideas (but no promises)

○ ideas - patches / development / research

What is a performance cliff?

● sudden (step) change of performance

○ sudden = not proportional to change in "inputs"

○ input = selectivity of a condition

SELECT * FROM my_table WHERE column = $1

○ $1 = 'A': 1000 rows, duration 1,000 ms

○ $1 = 'B': 1001 rows, duration ??? ms

○ ~1,000 ms? What if it's 10,000 ms?

Sources of discontinuity?

● flips between different "execution strategies"

● various things are ultimately decided at runtime

○ on/off decision - one row may trigger a lot of work

○ e.g. hashjoin / hashagg spilling, on-disk sort, ...

● switching to a different "path" (ways to execute query)

○ the whole point of why we calculate costs

○ cost and duration may not "align" perfectly

Runtime decisions

Example: ... IN (list)

SELECT * FROM test WHERE a IN ('aaaaaa...a', ..., 'aaaaaa...x');

-- table has ~965MB

-- random strings with long prefixes (expensive comparisons)

CREATE TABLE test (a text);

INSERT INTO test

SELECT 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' || md5(random()::text)

 FROM generate_series(1,10000000) s(i);

VACUUM ANALYZE test;

Example: ... IN (list)

SELECT * FROM test WHERE a IN (

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac4ca4238a0b923820dcc509a6f75849b', -- 1

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac81e728d9d4c2f636f067f89cc14862c', -- 2

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeccbc87e4b5ce2fe28308fd9f2a7baf3', -- 3

 'aa87ff679a2f3e71d9181a67b7542122c', -- 4

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaae4da3b7fbbce2345d7772b0674a318d5', -- 5

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa1679091c5a880faf6fb5e6087eb1b2dc', -- 6

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa8f14e45fceea167a5a36dedd4bea2543', -- 7

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac9f0f895fb98ab9159f51fd0297e236d', -- 8

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa45c48cce2e2d7fbdea1afc51c7c6ad26' -- 9

);

==> 1000 ms

Example: ... IN (list)

SELECT * FROM test WHERE a IN (

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac4ca4238a0b923820dcc509a6f75849b', -- 1

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac81e728d9d4c2f636f067f89cc14862c', -- 2

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeccbc87e4b5ce2fe28308fd9f2a7baf3', -- 3

 'aa87ff679a2f3e71d9181a67b7542122c', -- 4

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaae4da3b7fbbce2345d7772b0674a318d5', -- 5

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa1679091c5a880faf6fb5e6087eb1b2dc', -- 6

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa8f14e45fceea167a5a36dedd4bea2543', -- 7

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac9f0f895fb98ab9159f51fd0297e236d' -- 8

);

How long will this take?

Example: ... IN (list)

SELECT * FROM test WHERE a IN (

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac4ca4238a0b923820dcc509a6f75849b', -- 1

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac81e728d9d4c2f636f067f89cc14862c', -- 2

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeccbc87e4b5ce2fe28308fd9f2a7baf3', -- 3

 'aa87ff679a2f3e71d9181a67b7542122c', -- 4

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaae4da3b7fbbce2345d7772b0674a318d5', -- 5

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa1679091c5a880faf6fb5e6087eb1b2dc', -- 6

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa8f14e45fceea167a5a36dedd4bea2543', -- 7

 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac9f0f895fb98ab9159f51fd0297e236d' -- 8

);

==> 2000 ms (EH?! twice the duration of a longer IN list?)

● two strategies

○ short list => linear seach

○ long list => hash table

● hard-coded threshold of 9 items for hash table

○ seems reasonable ...

● ideal threshold depends on cost of a comparison

○ specific to data-type and values (e.g. long prefix like here)

○ impossible to know in advance / during execution

Example: ... IN (list)

● in-memory vs. on-disk

○ sort

○ hashjoin

○ hashagg

● JIT can be quite expensive & useless

○ enabled depending on total cost of a query

○ ongoing effort to improve (planning & execution)

Other runtime decisions ...

Multiple paths

● plan cost

○ amount of "resources" used byt plan (CPU, I/O)

○ more resources → higher cost → higher duration

● assumptions about cost

○ monotonic & continuous

○ w.r.t. to inputs (selectivity) and outputs (duration)

● we assume estimates are correct (for this talk)

○ bogus estimates → arbitrarily wrong plan

Cost-based planning

Visualization

SET enable_indexscan = off;
SET enable_seqscan = off;
SET max_parallel_workers_per_gather = 0;

EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM test WHERE a BETWEEN 100 AND 200; ==> 1%

 QUERY PLAN
--
 Bitmap Heap Scan on test (cost=137.66..24091.40 rows=9877 width=4)
 (actual rows=10039 loops=1)
 Recheck Cond: ((a >= 100) AND (a <= 200))
 Heap Blocks: exact=8983
 -> Bitmap Index Scan on test_a_idx (cost=0.00..135.19 rows=9877 width=0)
 (actual rows=10039 loops=1)
 Index Cond: ((a >= 100) AND (a <= 200))
 Planning Time: 0.212 ms
 Execution Time: 72.586 ms
(7 rows)

selectivity cost duration

1% 24091.4 72.586

2% 35875.6 93.345

...

100% 74189.1 642.525

SELECT * FROM t WHERE a BETWEEN $1 AND $2

100M rows, random data

CREATE TABLE test (a INT, b TEXT) WITH (fillfactor=50);

-- 13GB table, 10k distinct values
-- 59 rows/page, each page has the same value

INSERT INTO test SELECT a, b FROM (
 SELECT a, b, generate_series(1,59) FROM (
 SELECT 10_000 * random() a,
 md5(random()::text) b
 FROM generate_series(1, 100_000_000/59)
) AS x
) AS y;

CREATE INDEX ON test (a);

~1%

~27%

~1%

SELECT * FROM test WHERE id BETWEEN 1000 AND 1127;
 QUERY PLAN
--
 Bitmap Heap Scan on test (actual rows=1293280 loops=1)
 Recheck Cond: ((id >= 1000) AND (id <= 1127))
 Heap Blocks: exact=21920
 -> Bitmap Index Scan on test_id_idx (actual rows=1293280 loops=1)
 Index Cond: ((id >= 1000) AND (id <= 1127))
 Planning Time: 9.268 ms
 Execution Time: 412.993 ms
(7 rows)

SELECT * FROM test WHERE id BETWEEN 1000 AND 1128;
 QUERY PLAN
--
 Seq Scan on test (actual rows=1301894 loops=1)
 Filter: ((id >= 1000) AND (id <= 1128))
 Rows Removed by Filter: 98698091
 Planning Time: 8.289 ms
 Execution Time: 10706.679 ms
(5 rows)

Mitigations?

Mitigations

● inherent to cost-based planning in general

● really hard to fix (during planning)

● costing is approximation

○ simplified model + incomplete data => imperfection

○ G. Graefe: "choice is confusion" [1]

● So, what options are there?

Making the cliff smaller

● ensure the "flip" does not happen

○ e.g. increase work_mem to do in-memory sorts

○ it "only" moves the threshold ahead

● reduce the impact of the "flip"

○ fast but ephemeral storage for temp files?

○ ...

Tuning cost model

● tune basic cost parameters

○ random_page_cost, cpu_tuple_cost, ...

○ try to align cost / duration charts better

● don't bother to fine-tune the parameter values

○ "ideal" values are query-specific

○ the flip needs to happen "close enough"

Future / Patch ideas

● adaptive execution

○ replace "a priori" decisions with exec time ones

○ ideal: adaptive, smooth transition, not just on/off

○ example: scan type selection vs. "Smooth Scan"

● would also help with estimation errors

● performance vs. robustness

Robustness / Research papers ...

[1] Profile of G. Graefe
https://sigmodrecord.org/publications/sigmodRecord/2009/pdfs/05_Profiles_Graefe.pdf

[2] Smooth Scan: Robust Access Path Selection without Cardinality Estimation

R. Borovica, S. Idreos, A. Ailamaki, M. Zukowski, C. Fraser
https://stratos.seas.harvard.edu/files/stratos/files/smoothscan.pdf

https://scholar.harvard.edu/files/stratos/files/smooth_vldbj.pdf

[3] A generalized join algorithm / G. Graefe
https://dl.gi.de/server/api/core/bitstreams/ce8e3fab-0bac-45fc-a6d4-66edaa52d574/content

https://sigmodrecord.org/publications/sigmodRecord/2009/pdfs/05_Profiles_Graefe.pdf
https://stratos.seas.harvard.edu/files/stratos/files/smoothscan.pdf
https://scholar.harvard.edu/files/stratos/files/smooth_vldbj.pdf
https://dl.gi.de/server/api/core/bitstreams/ce8e3fab-0bac-45fc-a6d4-66edaa52d574/content

Robustness / Research papers ...

Dagstuhl seminars / Robust Performance in Database Query Processing

● 2010
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/10381

● 2012
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/12321

● 2017
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/17222

● 2022
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/22111

● 2024
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/24101

https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/10381
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/12321
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/17222
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/22111
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/24101

Joining the community

● pgsql-hackers

● my office hours

● hacking workshop & mentoring

○ https://rhaas.blogspot.com/

○ https://discord.gg/gyDQBeZA

● https://planet.postgresql.org

https://rhaas.blogspot.com/
https://discord.gg/gyDQBeZA
https://planet.postgresql.org

