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not a filesystem engineer

database engineer
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Which file system should | use for

PostgreSQL in production?
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According to results of our benchmarks

from 2003 the best file system ...
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What does it mean that a file system is

“stable” and “production ready”?
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| don't hate any of the filesystems!
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SSD
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File systems

« EXT3/4, XFS, ... (and others)

- traditional design, generally from 90s

- same goals, different features and tuning options
- Incremental improvements, reasonably “modern”
- mature, reliable, battle-tested

e BTRFS, ZFS
- next-gen CoW file systems, new architecture / design

 others (not really discussed in the talk)
- log-organized, distributed, clustered, ...
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a bit about history
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EXT3, EXT4, XFS

. EXT3 (2001) / EXT4 (2008)

— evolution of original Linux file system (ext, ext2, ...)
- Improvements, bugfixes ...

. XFS (2002)

- originally SGl Irix 5.3 (1994)
- 2000 - released under GPL
- 2002 — merged into 2.5.36

e both EXT4 and XFS are

- reliable file systems with a journal
- proven by time and many production deployments
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EXT3, EXT4, XFS

e conceived In time of rotational devices

- mostly work on SSDs
— stop-gap for future storage systems (NVRAM, ...)

* mostly evolution, not revolution
- adding features (e.g. TRIM, write barriers, ...)
- scalability improvements (metadata, ...)
- fixing bugs

* be careful when dealing with

- obsolete benchmarks and anecdotal “evidence”
- misleading synthetic benchmarks
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EXT3, EXT4, XFS

e traditional design + journal

* not designed for
- multiple devices
- volume management
- snapshots

* require additional components to do that

- hardware RAID
- software RAID (dm)
- LVM / LVM?2

2ndQuadrant 1

Professional PostgreSQL



BTRFS, ZFS
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BTRFS, ZFS

e fundamental ideas
- Integrating layers (LVM + dm + ...)
- aimed at consumer level hardware (failures are common)
- designed for larger data volumes

« which hopefully gives us ...

more flexible management
— built-in snapshots
— compression, deduplication
- checksums
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BTRFS, ZFS

« BTRFS

- merged in 2009, still “experimental”

- on-disk format marked as “stable” (1.0)

- some say it's “stable” or even “production ready” ...
— default in some distributions

e /FS
- originally Sun / Solaris, but “got Oracled” :-(
- today slightly fragmented development (lllumos, Oracle, ...)

- available on other BSD systems (FreeBSD)
- “ZFS on Linux” project (but CDDL vs. GPL and such)
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Generic tuning options
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Generic tuning options

 TRIM (discard)

- enable / disable sending TRIM commands to SSDs
- Influences internal cleanup processes / wear leveling
- not necessary, may help the SSD with “garbage collection”

e Write barriers

— prevent the drive from reordering writes (journal x data)
- does not protect against data loss (but consistency)
— write cache + battery => write barriers may be turned off

« SSD alignment
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Specific tuning options
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BTRFS

e nodatacow

- disables “copy on write” (CoW), but still done for snapshots
- also disables checksums (requires “full” CoW)
— also probably end of “torn-page resiliency” (have to do FPW)

e ssd

— enables various SSD optimizations (unclear which ones)

e compress=lzo/zlib

— compression (speculative)
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LFS

recordsize=8kB

- standard page 128kB (much larger than 8kB pages in PostgreSQL)
- problems when caching in ARC (smaller number of “slots™)

logbias=throughput [latency]
- Impacts work with ZIP (latence vs. throughput optimizations)
zfs_arc_max

- limitation of ARC cache size
- should be modified automatically, but external kernel module ...

primarycache=metadata
- prevents double buffering (shared buffers vs. ARC)
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LFS

recordsize=8kB

- standard page 128kB (much larger than 8kB pages in PostgreSQL)
- problems when caching in ARC (smaller number of “slots”)

logbias=throughput [latency]
- Impacts work with ZIP (latence vs. throughput optimizations)
zfs_arc_max

- limitation of ARC cache size
- should be modified automatically, but external kernel module ...

primarycache=metadata
- prevenis-double-bufferingu{shared-buffersvs-ARC)
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Benchmark
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System

CPU: Intel 15-2500k

- 4 cores @ 3.3 GHz (3.7GHz)
- 6MB cache
- 2011-2013

8GB RAM (DDR3 1333)

SSD Intel S3700 100GB (SATA3)
Gentoo + kernel 4.0.4
PostgreSQL 9.4
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ngbench (TPC-B)

 transactional benchmark / stress-test

- small queries (access using PK, ...)

- mix different typs of I/O (reads/writes, random/sequential)
 variants

- read-write (SELECT + INSERT + UPDATE)

- read-only (SELECT)
e data set sizes

- small (~200MB)

- medium (~50% RAM)

- large (~200% RAM)
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But it's not representative!
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Results

e more than 40 combinations tested
* every test runs >4 days

https://bitbucket.org/tvondra/fsbench-i5
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https://bitbucket.org/tvondra/fsbench-i5

pgbench read-only
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pgbench read-write
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pgbench / small read-write
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number of clients

pgbench / small read-write
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pgbench / large read-write
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pgbench / large read-write
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transactions

Write barriers

ext4 and xfs (defaults, noatime)
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variability
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pgbench per second
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EXT / XFS

* mostly the same behavior

- EXT4 — higher throughput but more jitter
- XFS — lower throughput, less jitter

* significant Impact of “write barriers”
- reliable drives / RAID controller needed
* small impact of TRIM

- depends on SSD model (over-provisioning etc.)
- depends on how “full” the SSD is
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BTRFS, ZFS

* significant price for CoW (but features)
- about 50% performance reduction in writes

« BTRFS

- all the problems | had while testing were with BTRFS
- good: no data corruption bugs
- bad: rather unstable and inconsistent behavior

e ZFS

— a bit alien in Linux world
- much more mature than BTRFS, nice behavior
- the ZFSonLinux still heavily developed
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Questions?
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latency [ms]
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BTRFS, ZFS

Tasks: 215 total, 2 running, 213 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0%us, 12.6%sy, 0.0%ni, 87.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 16432096k total, 16154512k used, 277584k free, 9712k buffers
Swap: 2047996k total, 22228k used, 2025768k free, 15233824k cached
PID USER PR NI VIRT RES SHR S %CPU 3SMEM TIME+ COMMAND
24402 root 20 0 0 0 O R 99.7 0.0 2:28.09 kworker/ul6:2
24051 root 20 0 0 0 0s 0.3 0.0 0:02.91 kworker/5:0
1 root 20 0 19416 608 508 s 0.0 0.0 0:01.02 init
2 root 20 0 0 0 0s 0.0 0.0 0:09.10 kthreadd

Samples: 59K of event 'cpu-clock', Event count (approx.): 10269077465

Overhead Shared Object Symbol
37.47% [kernel] [k] btrfs bitmap cluster
30.59% [kernel] [k] find next zero bit
26.74% [kernel] [k] find next bit
1.59% [kernel] [k] raw spin unlock irqgrestore
0.41% [kernel] [k] rb next
0.33% [kernel] [k] tick nohz idle_
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BTRFS, ZFS

$ df /mnt/ssd-s3700/
Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sdal 97684992 71625072 23391064 76% /mnt/ssd-s3700

S btrfs filesystem df /mnt/ssd-s3700
Data: total=88.13GB, used=65.82GB
System, DUP: total=8.00MB, used=16.00KB
System: total=4.00MB, used=0.00
Metadata, DUP: total=2.50GB, used=2.00GB <= full (0.5GB for btrfs)
Metadata: total=8.00MB, used=0.00
total=364.00MB, used=0.00

$ btrfs balance start -dusage=10 /mnt/ssd-s3700

https://btrfs.wiki.kernel.org/index.php/Balance_Filters
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EXT3/4, XFS

 Linux Filesystems: Where did they come from?
(Dave Chinner @ linux.conf.au 2014)
https://www.youtube.com/watch?v=SMcVdzZk7wV8

» Ted Ts'o on the ext4 Filesystem
(Ted Ts'o, NYLUG, 2013)
https://www.youtube.com/watch?v=2mYDFr5T4tY

« XFS: There and Back ... and There Again?
(Dave Chinner @ Vault 2015)
https://lwn.net/Articles/638546/

« XFS: Recent and Future Adventures in Filesystem Scalability
(Dave Chinner, linux.conf.au 2012)
https://www.youtube.com/watch?v=FegjLbCnhoBw

« XFS: the filesystem of the future?
(Jonathan Corbet, Dave Chinner, LWN, 2012)
http://lwn.net/Articles/476263/
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