PostgreSQL on EXT3/4, XFS,
BTRFS and ZFS

pgconf.eu 2015, October 27-30, Vienna

Tomas Vondra
tomas.vondra@2ndquadrant.com

ondQuadrant T

Professional PostgreSQL



not a filesystem engineer

database engineer

2ndQuadrant 1

Professional PostgreSQL



Which file system should | use for

PostgreSQL in production?

2ndQuadrant 1

Professional PostgreSQL



According to results of our benchmarks

from 2003 the best file system ...

2ndQuadrant 1

Professional PostgreSQL



What does it mean that a file system is

“stable” and “production ready”?

2ndQuadrant 1

Professional PostgreSQL



| don't hate any of the filesystems!

2ndQuadrant 1

Professional PostgreSQL



SSD

2ndQuadrant 1

Professional PostgreSQL



File systems

« EXT3/4, XFS, ... (and others)

- traditional design, generally from 90s

- same goals, different features and tuning options
- Incremental improvements, reasonably “modern”
- mature, reliable, battle-tested

e BTRFS, ZFS
- next-gen CoW file systems, new architecture / design

 others (not really discussed in the talk)
- log-organized, distributed, clustered, ...

2ndQuadrant 1

Professional PostgreSQL



a bit about history

2ndQuadrant 1

Professional PostgreSQL



EXT3, EXT4, XFS

. EXT3 (2001) / EXT4 (2008)

— evolution of original Linux file system (ext, ext2, ...)
- Improvements, bugfixes ...

. XFS (2002)

- originally SGl Irix 5.3 (1994)
- 2000 - released under GPL
- 2002 — merged into 2.5.36

e both EXT4 and XFS are

- reliable file systems with a journal
- proven by time and many production deployments

2ndQuadrant 1

Professional PostgreSQL



EXT3, EXT4, XFS

e conceived In time of rotational devices

- mostly work on SSDs
— stop-gap for future storage systems (NVRAM, ...)

* mostly evolution, not revolution
- adding features (e.g. TRIM, write barriers, ...)
- scalability improvements (metadata, ...)
- fixing bugs

* be careful when dealing with

- obsolete benchmarks and anecdotal “evidence”
- misleading synthetic benchmarks

2ndQuadrant 1

Professional PostgreSQL



EXT3, EXT4, XFS

e traditional design + journal

* not designed for
- multiple devices
- volume management
- snapshots

* require additional components to do that

- hardware RAID
- software RAID (dm)
- LVM / LVM?2

2ndQuadrant 1

Professional PostgreSQL



BTRFS, ZFS

2ndQuadrant 1

Professional PostgreSQL



BTRFS, ZFS

e fundamental ideas
- Integrating layers (LVM + dm + ...)
- aimed at consumer level hardware (failures are common)
- designed for larger data volumes

« which hopefully gives us ...

more flexible management
— built-in snapshots
— compression, deduplication
- checksums

2ndQuadrant 1

Professional PostgreSQL



BTRFS, ZFS

« BTRFS

- merged in 2009, still “experimental”

- on-disk format marked as “stable” (1.0)

- some say it's “stable” or even “production ready” ...
— default in some distributions

e /FS
- originally Sun / Solaris, but “got Oracled” :-(
- today slightly fragmented development (lllumos, Oracle, ...)

- available on other BSD systems (FreeBSD)
- “ZFS on Linux” project (but CDDL vs. GPL and such)

ondQuadrant 1

Professional PostgreSQL



Generic tuning options

ondQuadrant 1

Professional PostgreSQL



Generic tuning options

 TRIM (discard)

- enable / disable sending TRIM commands to SSDs
- Influences internal cleanup processes / wear leveling
- not necessary, may help the SSD with “garbage collection”

e Write barriers

— prevent the drive from reordering writes (journal x data)
- does not protect against data loss (but consistency)
— write cache + battery => write barriers may be turned off

« SSD alignment

ondQuadrant 1

Professional PostgreSQL



Specific tuning options

ondQuadrant 1

Professional PostgreSQL



BTRFS

e nodatacow

- disables “copy on write” (CoW), but still done for snapshots
- also disables checksums (requires “full” CoW)
— also probably end of “torn-page resiliency” (have to do FPW)

e ssd

— enables various SSD optimizations (unclear which ones)

e compress=lzo/zlib

— compression (speculative)

ondQuadrant 1

Professional PostgreSQL



LFS

recordsize=8kB

- standard page 128kB (much larger than 8kB pages in PostgreSQL)
- problems when caching in ARC (smaller number of “slots™)

logbias=throughput [latency]
- Impacts work with ZIP (latence vs. throughput optimizations)
zfs_arc_max

- limitation of ARC cache size
- should be modified automatically, but external kernel module ...

primarycache=metadata
- prevents double buffering (shared buffers vs. ARC)

ondQuadrant 1

Professional PostgreSQL



LFS

recordsize=8kB

- standard page 128kB (much larger than 8kB pages in PostgreSQL)
- problems when caching in ARC (smaller number of “slots”)

logbias=throughput [latency]
- Impacts work with ZIP (latence vs. throughput optimizations)
zfs_arc_max

- limitation of ARC cache size
- should be modified automatically, but external kernel module ...

primarycache=metadata
- prevenis-double-bufferingu{shared-buffersvs-ARC)
2ndQuadrant 1

Professional PostgreSQL



Benchmark

ondQuadrant 1

Professional PostgreSQL



System

CPU: Intel 15-2500k

- 4 cores @ 3.3 GHz (3.7GHz)
- 6MB cache
- 2011-2013

8GB RAM (DDR3 1333)

SSD Intel S3700 100GB (SATA3)
Gentoo + kernel 4.0.4
PostgreSQL 9.4

ondQuadrant 1

Professional PostgreSQL



ngbench (TPC-B)

 transactional benchmark / stress-test

- small queries (access using PK, ...)

- mix different typs of I/O (reads/writes, random/sequential)
 variants

- read-write (SELECT + INSERT + UPDATE)

- read-only (SELECT)
e data set sizes

- small (~200MB)

- medium (~50% RAM)

- large (~200% RAM)

ondQuadrant 1

Professional PostgreSQL



But it's not representative!

2ndQuadrant 1

Professional PostgreSQL



Results

e more than 40 combinations tested
* every test runs >4 days

https://bitbucket.org/tvondra/fsbench-i5

ondQuadrant 1

Professional PostgreSQL


https://bitbucket.org/tvondra/fsbench-i5

pgbench read-only

ondQuadrant 1

Professional PostgreSQL



60000

50000

40000

30000

20000

transactions per second

10000

pgbench / small read-only

4 6 8 10

number of clients

12 14 16 18

ondQuadrant 1

Professional PostgreSQL



40000
35000
'g 30000
$ 25000
o
S 20000
)
[
S 15000
(&)
(0]
® 10000
@
5 5000
0

pgbench / large read-only

—ZFS

— EXT4

4 6 8

10 12 14 16 18

number of clients

— ZFS (recordsize=8Kk) BTRFS
— BTRFS (nodatacow) — F2FS

EXT3

ReiserFS
— XFS

ondQuadrant 1

Professional PostgreSQL



pgbench read-write

ondQuadrant 1

Professional PostgreSQL



pgbench / small read-write

8000
- 7000
§ 6000 — —
@ 5000 —
(D]
S 4000
2
S 3000
2
g 2000
€ 1000
0
0 2 4 6 8 10 12 14 16 18

number of clients

— BTRFS (ssd, nobarrier) — BTRFS (ssd, nobarrier, discard, nodatacow)
EXT3 — EXT4 (nobarrier, discard)

— F2FS (nobarrier, discard) ReiserFS (nobarrier)

— XFS (nobarrier, discard) ZFS

— ZFS (recordsize, logbias)

ondQuadrant 1

Professional PostgreSQL



number of clients

pgbench / small read-write

8000
7000
6000
5000
4000
3000
2000
1000

8 10 12 14 16 18

number of clients

— BTRFS (ssd, nobarrier, discard, nodatacow) — ZFS (recordsize, logbias)

F2FS (nobarrier, discard)
— ReiserFS (nobarrier)

— EXT4 (nobatrrier, discard)
XFS (nobatrrier, discard)

ondQuadrant 1

Professional PostgreSQL



pgbench / large read-write

6000

T 5000
(@]
O
® 4000
)
2 3000 -
0 e
S
2 2000
©
8 //
S 1000

0]

0 2 4 6 8 10 12 14 16 18

number of clients

—ZFS — BTRFS (ssd)
ZFS (recordsize) — ZFS (recordsize, logbias)
— F2FS (nobarrier, discard) BTRFS (ssd, nobarrier, discard, nodatacow)
— EXT3 ReiserFS (nobarrier)
— XFS (nobarrier, discard) EXT4 (nobarrier, discard)

ondQuadrant 1

Professional PostgreSQL



pgbench / large read-write

6000
5000
i®)
c
@)
@ 4000
0
@
2 3000
(2]
2 —
o
o 2000
G
n
C
0
0 2 4 6 8 10 12 14 16 18
number of clients
— ZFS (recordsize, logbias) — F2FS (nobarrier, discard)
BTRFS (ssd, nobarrier, discard, nodatacow) — ReiserFS (nobarrier)
— XFS (nobarrier, discard) EXT4 (nobarrier, discard)

ondQuadrant 1

Professional PostgreSQL



transactions

Write barriers

ext4 and xfs (defaults, noatime)

7000
6000 ) “
sooo | AR AP AN AR
4000 b‘f&,"f_’?&g‘._ A EFNE :-__.»,,_i:.. = ._.% WYY ==.§5.:’5'-., E__é:;" !

e R ='::;:~'—'"‘_:.-':' :ég.:‘; PSR el z
3000 PR
2000
1000 ! |

3
i
~
TN
dh".6 s
A

0 50 100 150 200 250 300

time (seconds)

"""""""" ext4 (barrier)
"""""""" xfs (barrier)

ext4 (nobarrier)
xfs (nobarrier)

2ndQuadrant 1

Professional PostgreSQL




variability

ondQuadrant 1

Professional PostgreSQL



pgbench per second

7000
6000
S [
§ 5000 \w'“wvw"""w A WMMN ”w NMMMM’W V‘WMM\V'I' M~
% 4000
i v
g 2000 \' '
£ 1000
0 L
0 50 100 150 200 250 300

time (seconds)

— btrfs (ssd, nobatrrier, discard) — btrfs (ssd, nobarrier, discard, nodatacow)
ext4 (nobarrier, discard) — xfs (nobarrier, discard)

— Zzfs (recordsize, logbias)
[]
2ndQuadrant 1

Professional PostgreSQL



EXT / XFS

* mostly the same behavior

- EXT4 — higher throughput but more jitter
- XFS — lower throughput, less jitter

* significant Impact of “write barriers”
- reliable drives / RAID controller needed
* small impact of TRIM

- depends on SSD model (over-provisioning etc.)
- depends on how “full” the SSD is

2ndQuadrant 1

Professional PostgreSQL



BTRFS, ZFS

* significant price for CoW (but features)
- about 50% performance reduction in writes

« BTRFS

- all the problems | had while testing were with BTRFS
- good: no data corruption bugs
- bad: rather unstable and inconsistent behavior

e ZFS

— a bit alien in Linux world
- much more mature than BTRFS, nice behavior
- the ZFSonLinux still heavily developed

2ndQuadrant 1

Professional PostgreSQL



Questions?

2ndQuadrant 1

Professional PostgreSQL



6000
5000
©
(e
3
S 4000
(7))
]
S 3000
(2]
(e
S
8 2000
(2]
S
£ 1000
0

pgbench | large read-write

ext4 (noatime, discard, nobarrier)

4 6 8

10 12 14 16 18

number of clients

— cfq — noop

deadline

2ndQuadrant 1

Professional PostgreSQL



latency [ms]

pgbench / large read-write (16 clients)

average latency

0.9
0.8

0.7

0.6

0.5
0.4
0.3
0.2

0.1
0 200 400 600 800 1000 1200
time (second)

—cfg — noop deadline

2ndQuadrant 1

Professional PostgreSQL



ms

20
18
16
14
12
10

o N B~ OO 0

pgbench / large read-write (16 clients)

i

mwimwnmn

50

A

latency standard deviation

Il

100

150

200 250 300

time (second)

— cfq — noop

deadline

2ndQuadrant 1

Professional PostgreSQL



BTRFS, ZFS

Tasks: 215 total, 2 running, 213 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0%us, 12.6%sy, 0.0%ni, 87.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 16432096k total, 16154512k used, 277584k free, 9712k buffers
Swap: 2047996k total, 22228k used, 2025768k free, 15233824k cached
PID USER PR NI VIRT RES SHR S %CPU 3SMEM TIME+ COMMAND
24402 root 20 0 0 0 O R 99.7 0.0 2:28.09 kworker/ul6:2
24051 root 20 0 0 0 0s 0.3 0.0 0:02.91 kworker/5:0
1 root 20 0 19416 608 508 s 0.0 0.0 0:01.02 init
2 root 20 0 0 0 0s 0.0 0.0 0:09.10 kthreadd

Samples: 59K of event 'cpu-clock', Event count (approx.): 10269077465

Overhead Shared Object Symbol
37.47% [kernel] [k] btrfs bitmap cluster
30.59% [kernel] [k] find next zero bit
26.74% [kernel] [k] find next bit
1.59% [kernel] [k] raw spin unlock irqgrestore
0.41% [kernel] [k] rb next
0.33% [kernel] [k] tick nohz idle_

2ndQuadrant 1

Professional PostgreSQL



BTRFS, ZFS

$ df /mnt/ssd-s3700/
Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sdal 97684992 71625072 23391064 76% /mnt/ssd-s3700

S btrfs filesystem df /mnt/ssd-s3700
Data: total=88.13GB, used=65.82GB
System, DUP: total=8.00MB, used=16.00KB
System: total=4.00MB, used=0.00
Metadata, DUP: total=2.50GB, used=2.00GB <= full (0.5GB for btrfs)
Metadata: total=8.00MB, used=0.00
total=364.00MB, used=0.00

$ btrfs balance start -dusage=10 /mnt/ssd-s3700

https://btrfs.wiki.kernel.org/index.php/Balance_Filters

2ndQuadrant 1

Professional PostgreSQL



EXT3/4, XFS

 Linux Filesystems: Where did they come from?
(Dave Chinner @ linux.conf.au 2014)
https://www.youtube.com/watch?v=SMcVdzZk7wV8

» Ted Ts'o on the ext4 Filesystem
(Ted Ts'o, NYLUG, 2013)
https://www.youtube.com/watch?v=2mYDFr5T4tY

« XFS: There and Back ... and There Again?
(Dave Chinner @ Vault 2015)
https://lwn.net/Articles/638546/

« XFS: Recent and Future Adventures in Filesystem Scalability
(Dave Chinner, linux.conf.au 2012)
https://www.youtube.com/watch?v=FegjLbCnhoBw

« XFS: the filesystem of the future?
(Jonathan Corbet, Dave Chinner, LWN, 2012)
http://lwn.net/Articles/476263/

2ndQuadrant 1

Professional PostgreSQL


https://www.youtube.com/watch?v=SMcVdZk7wV8
https://www.youtube.com/watch?v=2mYDFr5T4tY
https://lwn.net/Articles/638546/
https://www.youtube.com/watch?v=FegjLbCnoBw
http://lwn.net/Articles/476263/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

