
Data corruption
Where does it come from and what

can you do about it?

Tomas Vondra
tomas@2ndquadrant.com / tomas@pgaddict.com

mailto:tomas@2ndquadrant.com
mailto:tomas@pgaddict.com

data_checksums = on

Well, not quite ...

The larger and older a database is, the
more likely it's corrupted in some way.

Agenda

● What is data corruption?
● Sources of data corruption
● What to do about it

Data corruption

● many possible causes
● hardware

○ disks / memory
○ environment (cosmic rays, temperature, …)

● software
○ bugs in OS (kernel, fs, libc, ...)
○ bugs in database systems / applications

● administrator mistake
○ remove pg_xlog ...

naturally one-off events

cosmic rays = no clue

storage

storage corruption

● this used to be pretty common
○ crappy disks, RAID controllers
○ insufficient power-loss protection

● it got better over time
○ better disks, better RAID controllers
○ when it failed, it failed totally

● now it's getting worse, again :-(
○ crappy disks connected over network

(SAN, EBS, NFS, …)
○ layers of virtualization everywhere

software issues

Operating System

● PostgreSQL is very trusting
○ relies on a lot of stuff
○ assumes it's perfect

● nothing is perfect
○ kernel bugs
○ filesystem bugs
○ glibc bugs (collation updates, …)
○ ...

Collations

● rules for language-specific text sort
○ defined in glibc
○ change rarely, poor versioning

● indexes require text ordering to be stable
● what if you build index and then

○ upgrade to diffferent collations
○ replica has different collations

● ICU solves this
○ reliable versioning

#fsyncgate

● CHECKPOINT
○ flush data from shared_buffers to disc
○ discard old part of WAL

● in case of fsync error, retry
● assumes two things

○ reliable kernel error reporting
○ dirty data are kept in page cache

#fsyncgate

● fact #1: error reporting unreliable
○ behavior depends on kernel version
○ errors may be consumed by someone else
○ fixed in new kernel (>= 4.13)

● fact #2: dirty data are discarded after error
○ retry never really retries the write
○ replaced with elog(PANIC) forcing recovery

● a bunch of bugs in the error handling ;-)
○ error branches are the least tested code

NFS == cosmic rays

database systems

● broken indexes
○ violated constraints
○ index scan misses data, seq scan finds it

● bogus data
○ insufficient UTF-8 validation
○ corrupted varlena headers

● data loss
○ multixact bug
○ inappropriate removal of data
○ data made visible/invisible inappropriately

database bugs

ERROR: invalid memory alloc request size 1073741824

pilot error

DBA mistakes

● drop incorrect table
● free space by removing "logs" from pg_xlog
● let's compress everything in DATADIR
● take backups incorrectly

What can you do about it?

Preventing data corruption

● use good hardware
○ good hardware is cheaper than outages
○ no, desktop machines are not good choice
○ ECC RAM is a must

● update regularly
○ minor releases exist for a reason

● test it
○ Are the numbers way too good?
○ What happens in case of power-loss?
○ Does the virtualization honor fsyncs etc.?

Preventing data corruption

● make sure you have backups
○ take them and test them
○ consider higher retention periods

● consider doing extra checks on backups
○ pg_verify_checksums
○ application tests

● "prophylactic" pg_dump is a good idea
○ pg_dump > /dev/null
○ especially when using pg_basebackup

fixing data corruption

So you want to fix in-place ...

There's no universal recipe :-(

Recipe

1) Try restoring from a backup.
○ The backup may be corrupted too.
○ Maybe it'd take too long. (Well, …)
○ ...

2) If you need to fix a corrupted cluster …
○ Always make sure you have a copy.
○ Take detailed notes about each step.
○ Proceed methodically.

Recipe

3) Asses the extent of data corruption
○ Is it just a single object? What object?
○ How many pages/rows/...?
○ ...

4) Ad-hoc recovery steps
○ Rebuild corrupted indexes.
○ Extract as much data as possible. Select "around", use

loop with exception block, …
○ pageinspect is your friend
○ Zero corrupted pages using "dd" etc.

http://thebuild.com/presentations/corruption-war-stories-fosdem-2017.pdf

http://thebuild.com/presentations/corruption-war-stories-fosdem-2017.pdf

So, what about data checksums?

data checksums

checksum(page number, page contents)

● available since PostgreSQL 9.3
○ … so all supported versions have them
○ disabled by default

● protects against (some) storage system issues
○ changes to existing pages / torn pages

● has some overhead
○ a couple of %, depends on HW / workload

● correctness vs. availability trade-off

data checksums are not perfect

● can't detect various types of corruption
○ pages written to different files
○ "forgotten" writes
○ truncated files
○ PostgreSQL bugs (before the write)
○ table vs. index mismatch

● may detect (some) memory issues

How do you verify checksums?

● you have to read all the data
● regular SQL queries

○ only active set (but not "hot" data)
● pg_dump

○ no checks for indexes
● pg_basebackup

○ since PostgreSQL 11
● pg_verify_checksums

○ since PostgreSQL 11, offline only

Questions?

